



# Evaluation of the Performance and Air Pollutant Emissions of Vehicles Operating on Various Natural Gas Blends

NGV Technology Forum November 20, 2008

**Presented By:** 

**Tom Durbin and Wayne Miller** 

University of California, Riverside
Bourns College of Engineering
Center for Environmental Research and Technology





# **Project Motivation**

- Liquefied natural gas (LNG) and NG demand will increase over the next decades.
- California's current needs met largely by domestic and Canadian imports; future NG will be imported from Asia or other parts of the Pacific Rim.
- NG from foreign sources is expected to have more variation in composition and properties.
- Broader ranges of NG composition and properties could impact performance and/or emissions of vehicles.





# **Current Project**

- Joint project with CEC with co-funding from SCAQMD
- Phase 1: Background literature survey and development of test plan with Technical Advisory Team
  - Review of literature and advisor recommendations indicate more testing of LDVs might be appropriate.
- Phase 2 Goal: Measure engine and vehicle performance, including emissions.
  - For a range of different LNG compositions
  - For a number of engine/vehicle technologies





# **Program Tasks**

- Task 1 Literature Review
- Task 2 Develop Test Plan
- Task 3 Test Engines
- Task 4 Test vehicles/engines
- Task 5 Final Report





# **Preparatory Tasks**

- Task 1 Literature Review
  - Convene Technical advisory committee
  - Review existing test data
  - Review information on gas composition (e.g., GTI report)
  - Provide suggestions for test engines/vehicles
- Task 2 Develop Test Plan
  - Types of engines
  - Test cycles
  - Test fuels
  - Test procedures





# **Literature Results** – Natural Gas Composition & Supply

- NG demand will increase 6.7% year (Jensen Associates)
- Supply composition
  - GTI studies in 1992 and 2006
  - CEC in 2005
  - PG&E Rule 21 and SoCalGas Rule 30
  - Natural Gas Council 2005
  - CARB new specifications for motor vehicles





# **Literature Results** – Natural Gas Composition & supply

|                                  | Site | Methane<br>(vol. %) | Heating<br>Value<br>(Btu/scf) | Wobbe<br>Number<br>(Btu/scf) |  |  |  |  |
|----------------------------------|------|---------------------|-------------------------------|------------------------------|--|--|--|--|
|                                  | 1    | 93.92               | 1033                          | 1340                         |  |  |  |  |
| Northern                         | 2    | 94.33               | 995                           | 1301                         |  |  |  |  |
| California Region                | 3    | 95.53               | 1017                          | 1326                         |  |  |  |  |
|                                  | 4    | 96.64               | 1011                          | 1336                         |  |  |  |  |
|                                  | 5    | 94.94               | 1026                          | 1340                         |  |  |  |  |
| Southern                         | 6    | 93.10               | 1039                          | 1341                         |  |  |  |  |
| California / San<br>Diego Region | 7    | 93.73               | 1028                          | 1335                         |  |  |  |  |
|                                  | 8    | 93.60               | 1030                          | 1335                         |  |  |  |  |
| Southern                         | 9    | 92.25               | 1040                          | 1335                         |  |  |  |  |
| California / L.A.                | 10   | 91.19               | 1048                          | 1337                         |  |  |  |  |
| Region                           | 11   | 93.48               | 1029                          | 1333                         |  |  |  |  |
|                                  | 12   | 92.34               | 1042                          | 1340                         |  |  |  |  |
| Summary                          |      |                     |                               |                              |  |  |  |  |
| Average                          |      | 93.09               | 1035                          | 1337                         |  |  |  |  |
| Minimum                          |      | 90.31               | 986                           | 1290                         |  |  |  |  |
| Maximum                          |      | 96.88               | 1060                          | 1358                         |  |  |  |  |

| \                                |         |          |            |         |  |  |  |  |  |  |
|----------------------------------|---------|----------|------------|---------|--|--|--|--|--|--|
|                                  | Minimum | National | California | Maximum |  |  |  |  |  |  |
|                                  |         | Average  | Average    |         |  |  |  |  |  |  |
| Methane                          | 74.5    | 93.9     | 93.1       | 98.1    |  |  |  |  |  |  |
| Ethane                           | 0.5     | 3.2      | 3.4        | 13.3    |  |  |  |  |  |  |
| Propane                          | 0.0     | 0.7      | 0.7        | 2.6     |  |  |  |  |  |  |
| C4 and higher                    | 0.0     | 0.4      | 0.3        | 2.1     |  |  |  |  |  |  |
| N <sub>2</sub> + CO <sub>2</sub> | 0.0     | 2.6      | 2.5        | 10.0    |  |  |  |  |  |  |

Table 2–2. Natural Composition Information Compiled by the California Energy Commission (CEC/CPUC, 2005)

Table 2-1. Natural Gas Methane Content, Heating Value, and Wobbe Number in California Regions, 1992 (Liss et al.)





# Literature Results – Natural Gas Composition & supply

| Project<br>Name               | Location                     | Major Owners                                                                               | Status                                 | Typical LNG<br>Composition                                     | LNG Values                                                               |  |  |
|-------------------------------|------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------|--|--|
| Sakhalin<br>Energy            | Russia,<br>off east<br>coast | Shell, Mitsui,<br>Mitsubishi                                                               | Under<br>construction,<br>startup 2008 | 92.2% C1, 4.9%<br>C2, 0.8% C3,<br>1.9% C4.                     | HHV=1105 Btu/scf<br>SpG=0.613<br>Wobbe=1411                              |  |  |
| Darwin                        | Australia                    | ConocoPhillips                                                                             | Under<br>construction,<br>2008         | Fields have high<br>liquids content.<br>LNG could be<br>"hot". | Unknown at present                                                       |  |  |
| Malaysia<br>TIGA              | Malaysia                     | Petronas, Shell,<br>Mitsubishi                                                             | Operational                            | 91.2% C1, 5.2%<br>C2, 3.3% C3,<br>1.4% C4+.                    | HHV=1137 Btu/scf<br>SpG=0.633<br>Wobbe=1428<br>(EIA: 1122 HHV)           |  |  |
| Northwest<br>Shelf<br>Train 5 | Australia                    | Woodside, Shell,<br>BP, BHP, Chevron,<br>Mitsubishi/Mitsui                                 | Under<br>construction,<br>2006         | 89.3% C1, 7.1%<br>C2, 2.5% C3,<br>1.0% C4+.                    | HHV=1128 Btu/scf<br>SpG=0.628<br>Wobbe=1424<br>(EIA: 1132 HHV)           |  |  |
| Tangguh<br>Project            | Indonesia                    | BP, CNOOC,<br>MI Berau B.V.<br>Nippon Oil Corp.<br>KG<br>Berau/Wiriagar<br>LNG Japan Corp. | In EPC phase<br>Startup 2008-<br>2009  | 96.3% C1, 2.6%<br>C2, 0.5% C3,<br>0.2% C4+, ,0.4%<br>N2.       | HHV=1039 Btu/scf<br>SpG=0.590<br>Wobbe=1369<br>(EIA reports 1118<br>HHV) |  |  |
| Peru LNG                      | Peru                         | Hunt Oil, Repsol,<br>SK                                                                    | Planned;<br>2009                       | Unknown at<br>present                                          | Unknown at present                                                       |  |  |
| Pilbara                       | Australia                    | BHP Billiton,<br>ExxonMobil                                                                | Pre-<br>feasibility<br>study           | 95% C1, 5%<br>N2                                               | HHV=964 Btu/scf<br>SpG=0.576<br>Wobbe=1270                               |  |  |

Table 2-3. Likely LNG Exporters to California





# **Literature Results** – Natural Gas Composition & supply



Figure 2-2. California's Gas Supply and Representative Wobbe Numbers





# **Literature Results** – LDV Composition

- GTI conducted study in 2006
  - Utilized a number of sources including the DMV, Bevilacqua-Knight,
     CARB, sales reports, and DOE information.
- Estimated number of LDVs in California is between 13,000 and 18,000
- 52-56% passenger cars (Civic, Crown Vic, Camry, etc.)
- 26-30% LD trucks (F-150)
- 16-18% vans/wagons (Chrysler minivan, full size vans)
- Conclusion: Based on current users, new CARB fuel rules will not create any serious issues with engine knock or driveability





# **Literature Results** – HDV Composition

- SoCalGas and SDG&E conducted survey of heavy-duty CNG vehicles in greater Southern California in 2006
- 4,224 CNG vehicle identified
- 3,015 "legacy" not designed to operate on sub-80 methane number
- 75% transit buses, with the categories including school buses, waste haulers, street sweepers, and others
- LA county had the largest number of CNG vehicles/engines, with the majority of these being DDC TL platforms





# **Literature Results** – HDV Composition

| Engine Make and                      | Legacy                        | Counties <sup>2</sup> (showing number of engines in 2005) |        |           |           |                   |         |                  |      |       |        | Total              |          |        |        |            |
|--------------------------------------|-------------------------------|-----------------------------------------------------------|--------|-----------|-----------|-------------------|---------|------------------|------|-------|--------|--------------------|----------|--------|--------|------------|
| Model                                | Fleet <sup>1</sup><br>Engine? | Los<br>Angeles                                            | Orange | San Diego | Riverside | San<br>Bernardino | Ventura | Santa<br>Barbara | Kern | Kings | Tulare | San Luis<br>Obispo | Imperial | Fresno | number | % of total |
| Detroit Diesel - "TK"<br>(8047-TKG8) | Yes                           | 1,427                                                     | 0      | 128       | 94        | 0                 | 22      | 0                | 0    | 0     | 0      | 0                  | 0        | 0      | 1,671  | 39.6%      |
| Cummins - L10 Phase 3                | Yes                           | 605                                                       | 0      | 0         | 18        | 0                 | 0       | 0                | 0    | 5     | 0      | 0                  | 0        | 0      | 628    | 14.9%      |
| John Deere - 6081H                   | No                            | 228                                                       | 54     | 115       | 77        | 52                | 17      | 12               | 8    | 2     | 27     | 18                 | 3        | 12     | 625    | 14.8%      |
| Cummins - C8.3G Plus                 | No                            | 104                                                       | 34     | 208       | 50        | 37                | 0       | 0                | 2    | 0     | 0      | 1                  | 0        | 0      | 436    | 10.3%      |
| Detroit Diesel - "MK"<br>(8047-MKG8) | Yes                           | 290                                                       | 0      | 0         | 0         | 0                 | 10      | 0                | 0    | 0     | 0      | 0                  | 0        | 0      | 300    | 7.1%       |
| Cummins - C8.3G                      | Yes                           | 25                                                        | 19     | 70        | 64        | 11                | 9       | 0                | 0    | 0     | 0      | 0                  | 0        | 0      | 198    | 4.7%       |
| Cummins - B5.9G Plus                 | No                            | 66                                                        | 4      | 7         | 0         | 14                | 2       | 0                | 0    | 0     | 0      | 0                  | 0        | 0      | 93     | 2.2%       |
| Cummins - B5.9G                      | Yes                           | 26                                                        | 0      | 27        | 40        | 2                 | 2       | 2                | 2    | 1     | 0      | 0                  | 0        | 0      | 102    | 2.4%       |
| Cummins - L10 Phase 1                | Yes                           | 0                                                         | 0      | 1         | 31        | 0                 | 0       | 0                | 0    | 0     | 0      | 2                  | 0        | 0      | 34     | 0.8%       |
| Detroit Diesel - "GK"<br>(8047-GKG8) | Yes                           | 4                                                         | 0      | 0         | 3         | 0                 | 16      | 0                | 0    | 0     | 0      | 0                  | 0        | 0      | 23     | 0.5%       |
| Cummins - L Gas Plus                 | No                            | 30                                                        | 2      | 0         | 0         | 0                 | 0       | 0                | 0    | 0     | 0      | 0                  | 0        | 0      | 32     | 0.8%       |
| John Deere - 6068H                   | No                            | 4                                                         | 0      | 16        | 0         | 0                 | 0       | 0                | 0    | 0     | 2      | 1                  | 0        | 0      | 23     | 0.5%       |
| Cummins - L10 Phase 2                | Yes                           | 0                                                         | 0      | 0         | 22        | 0                 | 4       | 0                | 0    | 0     | 0      | 0                  | 0        | 0      | 26     | 0.6%       |
| Caterpillar - Dual Fuel              | Yes                           | 4                                                         | 16     | 0         | 0         | 0                 | 0       | 0                | 0    | 0     | 0      | 0                  | 0        | 0      | 20     | 0.5%       |
| Tecogen                              | Yes                           | 0                                                         | 0      | 0         | 0         | 0                 | 0       | 2                | 0    | 0     | 0      | 9                  | 0        | 0      | 11     | 0.3%       |
| Mack - E7G                           | Yes                           | 1                                                         | 0      | 0         | 1         | 0                 | 0       | 0                | 0    | 0     | 0      | 0                  | 0        | 0      | 2      | 0.0%       |
| 7-4-1                                | number                        | 2,814                                                     | 129    | 572       | 400       | 116               | 82      | 16               | 12   | 8     | 29     | 31                 | 3        | 12     | 4,224  | 100.0%     |
| Total                                | %                             | 67%                                                       | 3%     | 14%       | 9%        | 3%                | 2%      | 0%               | 0%   | 0%    | 1%     | 1%                 | 0%       | 0%     | 100%   | -          |
| Total (Loggov Floot salv)            | number                        | 2,382                                                     | 35     | 226       | 273       | 13                | 63      | 4                | 2    | 6     | 0      | 11                 | 0        | 0      | 3,015  | -          |
| Total (Legacy Fleet only)            | %                             | 79%                                                       | 1%     | 7%        | 9%        | 0%                | 2%      | 0%               | 0%   | 0%    | 0%     | 0%                 | 0%       | 0%     | 100%   | -          |

Table 3-1. Heavy Duty NG Engines Operating in the Southern California Region of SoCalGas and SDG&E in 2005 (Harte, 2006)





# Literature Results – NG engines

- Cummins/Westport
  - Earlier models L10, C-Gas Plus
  - B Gas Plus, ISL G
- Detroit Diesel Corporation
  - Series 50G engine "GK" 94-98 "TK" 98-02 "MK" 02- end production
- John Deere
  - 8.1 L 6081 engine
- Mack
  - 12 L Eco-Tech E7G plus some other research efforts
- Others
  - Caterpillar conducted some published development studies
  - Next Generation Vehicle Program
    - Teleflex/General Motors, Clean Air Partners
  - Hercules 5.6L NG engine in mid-1990s





# **Literature Results** – Emissions/Performance Studies SoCalGas

- NG compressor in Ventura County (2003)
  - Emissions showed considerable variability
- Second rich-burn NG gas compressor
  - Linear correlations between NOx and Wobbe Number, CO and HHV, and VOCs and VOC composition
- Paper Studies
  - 5 different Cummins engines
  - 3 different DDC engines (GK, TK, MK)
  - Open loop systems could experience knock on rich mixtures
- Studies at/with Southwest Research (SwRI)
  - Engine testing on an MK and TK
    - $\bullet$  Emissions did change with fuel composition with  $\mathrm{NO}_{\mathrm{x}}$  increasing with increasing Wobbe #
  - Field study with Los Angeles Metropolitan Transit Authority
- Ongoing work at SwRI
  - A number of engines and fuel blends





# Literature Results – Emissions/Performance Studies National Energy Technology Laboratory

- Conducted literature review
  - Fuel composition impact in vehicles/engines
  - Fundamental studies of combustion
- Some in-house tests
- Concluded most modern engines have A/F control that will reduce/eliminate impacts of Wobbe Index and Methane Number (MN)
  - Closed loop systems will not have significant emissions impact from differing LNG mixtures
  - Open loop systems may see small changes in CO, NO<sub>x</sub>, and NMHC from differing LNG mixtures
  - Most engines certified to operate on a MN >80
- Some points appear to contradict other available literature





# **Literature Results** – Emissions/Performance Studies Other Studies

- Field Studies focusing on CNG
  - Sunline
  - Washington Metropolitan Area Transit Authority
  - Norcal
  - US Postal Service
- Emissions Testing by West Virginia University





# **Light-Duty Vehicle Testing**

- Testing in CE-CERT's Vehicle Emissions Research Laboratory
- 2 Vehicles
  - Late model, SULEV certified Honda GX
  - Ford Crown Victoria with BAF certified retrofit kit, SULEV certified
  - High population within DMV database
  - Vehicles to be obtained through SCAQMD
- 2 to 4 fuel blends
- Test cycles with be FTP and Unified Cycle with 3 replicates on each fuel
- 50 mph preconditioning drive on each new fuel tested







# **Engine Testing**

- Primary testing in CE-CERT's Engine Dynamometer Test Facility
- 1-3 Engines
  - Engines to be certified to 2010 standards (Westport LNG, ESI, ISL G)
  - Reduction in number of engines due to PAC emphasis on testing light-duty vehicles and on chassis dynamometer testing.
  - Exploring the possibility of testing the Westport LNG at their test facility.
- 4 fuel blends
- Test cycles could include: FTP, AVL 8 mode







# **Vehicle Chassis Dynamometer Testing**

- Testing at CE-CERT chassis dynamometer facility/or another local facility
- 2+ Vehicles (chassis dynamometer testing was emphasized by PAC)
- 4 fuel blends
- Test cycles to be determined







# **Gas blends for Testing**

- A gas representative of pipeline gas.
- Gas that meets CARB natural gas specifications. Properties consistent with an average gas were selected.
- A blend with a high Wobbe number that is representative of a gas that would be on the "hotter" end of the gas that might wind up in the marketplace.
- A blend where the high Wobbe number gas is blended with N<sub>2</sub> to bring the Wobbe number down to 1385.





# **Proposed Gas blends for Testing**

| Gas# | Description        | methane | ethane | propane | I-butane | N2   | MN        | Wobbe # | HHV  |
|------|--------------------|---------|--------|---------|----------|------|-----------|---------|------|
| 1    | Baseline, Line gas | 96.08   | 1.78   | 0.37    | 0.16     | 1.62 | 100       | 1344    | 1020 |
| 2    | CARB spec gas      | 90.3    | 4      | 2       |          | 3.7  | 89        | 1330    | 1038 |
| 3    | 1150 BTU, Hi Wobbe | 87.03   | 9.23   | 2.76    | 0.99     | 0    | <b>75</b> | 1436    | 1150 |
| 4    | modified gas 3     | 84.5    | 8.9    | 2.7     | 1.0      | 2.85 | 74        | 1385    | 1118 |